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Abstract— We present an extended version of our work on
the design and implementation of a reference model of the
human body, the Master Motor Map (MMM) which should
serve as a unifying framework for capturing human motions,
their representation in standard data structures and formats
as well as their reproduction on humanoid robots. The MMM
combines the definition of a comprehensive kinematics and
dynamics model of the human body with 104 DoF including
hands and feet with procedures and tools for unified capturing
of human motions. We present online motion converters for
the mapping of human and object motions to the MMM model
while taking into account subject specific anthropometric data
as well as for the mapping of MMM motion to a target robot
kinematics. Experimental evaluation of the approach performed
on VICON motion recordings demonstrate the benefits of the
MMM as an important step towards standardized human
motion representation and mapping to humanoid robots.

I. INTRODUCTION

Capturing, understanding and reproducing human motion
is a challenging topic in the context of humanoid robotics.
A wide variety of different systems and approaches exists,
which are used to capture human motion, e.g., visually or by
attaching markers to the subjects. Most of these systems are
based on their specific data format and model definitions.
Furthermore, a large number of approaches for action and
activity recognition exists, expecting input data specific to
their own internal representation. Finally, any target platform
for the reproduction of human motion, e.g., visualization
models for animation and simulation purposes and humanoid
robots, expects human motion capture data in terms of its
own kinematic model.

In order to unify the representation of human motion
capture data, we proposed the Master Motor Map (MMM)
approach in previous work, see [1] and [2]. With the MMM,
it is possible to map and unify different motions coming from
varying human motion capture systems to an intermediate
MMM model in order to convert these motions in a second
step onto different kinematics, such as humanoid robots. This
concept has been successfully used for mapping motions
originating from different motion capture systems (e.g.,
from stereo vision or marker-based systems) onto simulated
characters and on the ARMAR-III [3] robots. In this work,
we present an extended formulation of the Master Motor
Map Framework. Besides several improvements regarding
modeling, rendering and transparent data specifications, we
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Fig. 1: A ray-traced image of a MMM motion involving an
environmental object converted from motion capture data.

emphasize how the MMM framework has been extended in
order to provide models and data structures for representing
manipulation activities (see Fig. 1). Furthermore, we demon-
strate how the MMM framework can be used for online
reproduction of human motion capture data on humanoid
robots. We provide an open source implementation which is
available under an open source license1. An illustration of
the MMM framework is shown in Fig. 2.

The remainder of this paper is organized as follows.
Section II gives an overview of the related work in the
different aspects covered by this work. The MMM model
specifications are described in Section III. Detailed descrip-
tion of the framework and the provided tools and algorithms
is given in Section V, Section VI and Section VII. The Large
Scale Human Motion Database is described in Section VIII
while Section IX concludes the work and discusses directions
for future work.

II. RELATED WORK

The first introduction to MMM was presented in [1] and
proposed an intermediate kinematic model for transferring
human motion capture data, which was inspired by [4] and
[5] and used a similar kinematic configuration as the human
body. The main concept was to use a rigid body system
with enough joints, each containing one degree of freedom
(DoF), to be able to reproduce any captured human motion.

1http://h2t.anthropomatik.kit.edu/752.php
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Fig. 2: Illustration of the MMM Framework.

While this has been used mostly for upper body motion
reconstruction, lower body kinematic configurations were
also provided. This model was later extended in [2] to include
dynamic parameters such as the center of mass (CoM),
relative weight and radius of rotation for every segment in the
body. It also introduced a large-scale non-linear optimization
to convert captured motion data to the MMM model and
transfer these motions to the ARMAR-III robot [3]. An
application to this framework later emerged in [6] which
exploited the dynamic properties of the model to extract
contact information from human motion capture without any
environmental knowledge.

Another approach to determine model properties was taken
in [7], where the authors used body scans of 250 subjects
to find statistical correlations between body shape variations
and subject sizes. Given specific body size parameters, this
enabled the authors to give a good estimate about the body
shape of the subject. An advanced method to solve the
inverse kinematics (IK) using high-order moments of feature
points was proposed in [8]. The proposed algorithm enables
the computation of the posture of a given model using a
wide variety of possible input data. Studies to determine
dynamic segment properties of human motion capture were
proposed in [9] and [10] where force plate measurement
was used to extract the dynamic properties of a subject,
such as CoM and mass. Standard parameters form literature
were used as starting estimates and interactively refined
by providing visual feedback. While some of the obtained
results contained physically incorrect estimations, most of
them were consistent with literature data. The authors pro-
pose a more complete database and additional constraints
on the principal moments of inertia to resolve the issue. In
[11], a complete overview about animation and control of
human simulation is given. This work has a higher focus

on interaction in behavior control. Algorithms to reproduce
athletic movements in a physically realistic way are presented
in [12]. The study tries to find simple but accurate control
algorithms for specific sport movements. In this approach
different control strategies for different motions are placed
in a growing library, where having lots of control strategies
for a wide variety of motions is considered to be of high
value.

While there are a lot of motion analysis toolboxes like [13]
and [14], the most commonly used one is OpenSim [15], a
biomechanical framework which focuses on dynamic simu-
lations of musculoskeletal systems and enables the analysis
of dynamic properties and muscle activities during different
kind of motions. Although this framework is not limited to
human models it contains a complete muscularskeletal model
of the human body.

III. THE MMM REFERENCE MODEL

We propose the MMM reference model, which consists
of a rigid body system with a well defined kinematic con-
figuration and dynamic properties. It is of a normalized size
and weight and can be scaled according to subject height and
total weight. The kinematic and dynamic specifications of the
whole body reference model are based on the biomechanical
analysis of Winter et al. [4]. The hand specifications are
derived from the analysis of Buchholz et al. as reported in
[16] and [17].

A. Kinematic Model

The kinematics of the MMM reference model consists of
104 DoF: 6 DoF cover the model pose, 23 DoF are assigned
to each hand, and the remaining 52 DoF are distributed on
arms, legs, head, eyes and body.

For convenience, the reference coordinate system in every
joint is chosen to have the same orientation when the model



Fig. 3: The kinematics of the MMM reference model.

Fig. 4: The kinematics of the right hand.

rests in its initial configuration, that is the x-axis pointing
to the right of the body, the y-axis to the front and the z-
axis pointing in upwards direction. Also, every multi DoF
joint is split into multiple joints with single DoF, where the
rotation is first applied about the x-axis, the z-axis and lastly
about the y-axis, originating from the base frame, extending
to the outer extremities of the model. In order to be able
to represent gaze directions, two DoFs are defined for every
eye. Further, all joint definitions incorporate a specification
of lower and upper limit (see Table I).

The model includes two hands with 23 DoF each (see
Fig. 4), where the thumb is modeled with a total of 5 DoF,
two at the CMC and MCP joints each and one DoF on the
IP joint. The index finger and the middle finger are modeled

TABLE I: Joint configuration details of the reference model.

Joint DoF X-Limits Z-Limits Y-Limits
LF/RF 1+1 [-30◦,45◦] - -
LM/RM 1+1 - [-30◦,45◦] -
LA/RA 3+3 [-40◦,30◦] [-30◦, 30◦] [-20◦, 20◦]
LK/RK 1+1 [-130◦,0◦] - -
LH 3 [-50◦,95◦] [-45◦,45◦] [-20◦,65◦]
RH 3 [-50◦,95◦] [-45◦,45◦] [-65◦,20◦]
LW 2 [-30◦,20◦] [-70◦,50◦] -
RW 2 [-30◦,20◦] [-50◦,70◦] -
LE/RE 2+2 [0◦,160◦] [-90◦,90◦] -
LS 3 [-70◦,190◦] [-70◦,60◦] [0◦,160◦]
RS 3 [-70◦,190◦] [-60◦,70◦] [-160◦,0]
LSC/RSC 2+2 - [-20◦,20◦] [-20◦,20◦]
LEY/REY 2+2 [-60◦,60◦] - [-60◦,60◦]
BUN 3 [-20◦,30◦] [-20◦,20◦] [-15◦,15◦]
BLN 3 [-45◦,15◦] [-15◦,15◦] [-20◦,20◦]
BT 3 [-35◦,27◦] [-36◦,36◦] [-20◦,20◦]
BP 3 [-50◦,35◦] [-45◦,45◦] [-20◦,20◦]

TABLE II: Normalized segment dimensions with respect to
total body height.

Segment Position δx δy δz
BP to BT 0,000 0,000 0,060
BT to LSC/RSC 0,000 0,087 0,188
LSC/RSC to LS/RS 0,023 0,000 0,000
LS/RS to LE/RE 0,000 0,000 0,188
LE/RE to LW/RW 0,000 0,000 0,145
LW/RW to Fingertips 0,000 0,000 0,108
BT to BLN 0,000 0,000 0,210
BLN to BUN 0,000 0,000 0,030
BUN to LEY/REY 0,015 0,030 0,066
BP to LH/RH 0,052 0,000 0,040
LH/RH to LK/RK 0,000 0,000 0,245
LK/RK to LA/RA 0,000 0,000 0,246
LA/RA to LM/RM 0,000 0,020 0,039
LM/RM to LF/RF 0,000 0,048 0,000
LF/RF to Toes 0,000 0,034 0,000

with 4 DoF, where two DoF are located at the MCP joint
and one on thee PIP and DIP joints. The ring finger and little
finger are extended with an additional DoF at the CMC joint
to better enable hand closure.

Literature shows that a three segment foot consisting of
hindfoot, forefoot and hallux is sufficient to map human foot
motions accurately [18]. We therefore added two additional
DoFs to the foot model, which connect the hindfoot with
the forefoot and the forefoot with the hallux. For the whole
body, without hands, the joints are connected with a total
of 25 segments. Detailed anthropometric data is provided in
Table II.

It is important to note though, that it is not required to
explicitly set every DoF present in the model. For walking
motions e.g., finger movements of the hand may be consid-
ered unimportant and therefore can be ignored. In this case,
the fingers of the hand will just remain in the initial pose.

B. Dynamic Model

Obtaining dynamic properties, such as center of mass
(CoM) or the inertia tensor, from living subjects is difficult.



Fig. 5: MMM provides a reference marker set to be used
with marker-based human capture systems.

Hence, we rely on reference values from literature which
provide statistical analysis and mean values. Some works
like [10], where human segment parameters are learned from
motion capture and force plate recordings, tend to confirm
such literature data. The dynamic properties of the reference
model are defined for each segment and include the position
of the CoM relative to the segment lengths, the mass of every
individual segment relative to the total mass of the subject
and the inertia tensor. While the first two parameters can
be linearly scaled according to given subject parameters, the
inertia tensor has to be recalculated using either the Parallel-
Axis Theorem [4] or can be derived from the appropriate
radius of gyration values, as described in [2]. In the MMM
framework all three parameters are computed according to
the given scaling factors.

IV. HUMAN MOTION CAPTURE

Although a large variety of human motion capture systems
exist, all of them able to be connected to the MMM system,
marker-based approaches for capturing human motion data
are widely used since they offer the possibility to capture
with high accuracy and high framerates. Hence, we propose a
reference marker set in order to unify motion recordings and
to ease the process of converting them to the MMM format.
Note that MMM and, in particular, the MMM converters
allow for custom marker placements, if needed. Furthermore,
subsets of the reference marker set may be used according to
the desired application. In the following, the MMM reference
marker set is briefly presented.

A. Whole-Body Marker Set

A reference markerset configuration as depicted in Fig. 5
is proposed. Marker positions are chosen to be placed on
specific landmarks of the human body to prevent additional
inaccuracies due to skin deformations or muscle movement.

Detailed information about the marker positions and
names can be freely accessed online2.

B. Marker Set for Grasping and Manipulation

To allow the observation of human grasping and manipula-
tion actions, the MMM reference marker set contains markers
on the human hand which are attached to the fingertips and
the palm. Other finger segments have been disregarded in
order to minimize the numbers of markers. An illustration
of the marker arrangement on the grasping hand is given in
Fig. 5.

V. THE MMM FRAMEWORK

A. RobotEditor

For the creation of geometric, kinematic and dynamic
models required for the framework as well as the definition of
marker sets on the surface of the reference model (or robots,
if required by a custom motion converter), the MMM tool
chain relies on the RobotEditor. This software has initially
been developed in the scope of robot hand modeling [19]
but has been further developed to support the definition of
marker sets on rigid body systems as well as to provide
the functionality to define dynamic models, collision models
and additional import and export capabilities. With this
software, it is possible to easily create kinematic, dynamic
and geometric models for rigid body systems such as the
MMM reference model, robots and also environmental ob-
jects which can directly be used by the MMM toolchain,
optionally combined with marker sets for processing motion
capture data (see VI-C). The RobotEditor3 is realized as a
plugin for the popular open-source 3D content creation suite
Blender4 and similar to this software, it is published under
an open-source license. Models created with the RobotE-
ditor are exported to the industry approved and extendable
COLLADA (rev 1.5) file format.The plugin also provides the
option for importing motions that have been converted by the
MMM framework and/or a custom converter. This allows for
high-quality rendered images (see Fig. 1) and videos of the
mapped motion for demonstration purposes and preview in
the MMM database.

B. MMM Data Format

The XML-based MMM data format consists of two parts.
First, setup information is specified, such as converter spe-
cific information (e.g., describing specific subject properties)
or a specification which subset of the model is used for the
following motion data. This allows considering just parts
of the reference model, e.g., just the hands in case manip-
ulation activities were recorded. The second part consists
of succeeding motion frames where for each frame, basic
motion information, such as model position and orientation,
is specified. Furthermore joint positions, velocities and ac-
celerations can be defined for each time stamp. In addition,
the generic MMM format allows for custom tags which

2https://motion-database.humanoids.kit.edu
3http://h2t.anthropomatik.kit.edu/748.php
4http://www.blender.org

https://motion-database.humanoids.kit.edu
http://h2t.anthropomatik.kit.edu/748.php
http://www.blender.org


Fig. 6: The top row shows a captured pick and place motion.
The converted motions of the reference model and an object
are shown below as a ray-traced image sequence.

may cover additional information, such as force values, gaze
directions, or symbolic information (e.g., object grasped)
which may have been generated by a converter.

C. MMM API

The MMM framework provides a platform independent
C++ application programming interface (API) which is avail-
able under an open source license.The implementation is
split into two parts. The first part, the MMMCore, contains
declaration of key data structures, the MMM model and core
functionality like C3D file reading. This lightweight package
has a low number of external dependencies to facilitate its
use in external projects. The second part, the MMMTools
project, contains extended algorithms, visualization support
and several command line and graphical user interface (GUI)
tools. With these tools, the MMM model can be visualized,
inspection and playback of motion files and/or marker data
is supported, and frontends for converter usage are provided.
The generic converter framework of MMM allows for a
custom converter implementation, supported by a plug-in
system for convenient access.

VI. MMM CONVERTERS

MMM Converters are either used to convert human motion
capture data to the MMM reference model or for converting
motions from MMM to a robot model. With the current API,
several reference implementations of converters are provided,
which we briefly describe in the following sections.

A. Conversion of Marker-Based Motion Capture Data

For the angle reconstruction, that is, the mapping from
recorded marker trajectories of motion capture data onto
the reference model, we implemented a basic converter
within the MMM framework. In each frame, the approach
minimizes the squared distance between recorded marker
positions and the virtual markers on the reference model.
The Jacobian matrices for each virtual marker position are
combined to define an over-determined system of linear
equations. Based on the assumption that in between suc-
cessive frames only a small marker displacement occurs, a
nearly linear relation between the Cartesian displacement and
the displacement of the joint angles can be assumed and
very few iterations are required to find the optimal solution

that minimizes the squared error. Additionally, we apply box
constraints for respecting joint angle limits based on task-
priorities [20] and an active set strategy [21]

∆θ = C+ (x(θ)− C · θ) + J+(I − C+C)∆x(θ),

where
C denotes a system of linear equations for the

fixation for joints at their limits which otherwise
would be violated,

J denotes the combined Jacobian matrix with re-
spect to all marker positions,

x(θ) the forward kinematics of all marker positions
combined into a vector and

∆x(θ) the distances to the real markers given a joint
configuration θ respectively.

∆θ is the joint displacement that minimizes the
squared error.

The model motion depicted in Fig. 6 has been generated
with this converter. The complete resulting motion of the
reference model is also shown alongside the original human
motion in the video attachment.

B. Conversion of Human Hand Movements

The captured fingertip movements (see Section IV-B) are
converted into fingertip trajectories in the MMM framework
by, first, transforming the movements into a coordinate
system located within in the MMM hand. Following the
notation of the hand markers in Fig. 5, we defined the origin
of this coordinate system to be the marker RPM which has
been placed on the back of the hand. Using the markers
RHTS and RHPS placed on each side of the hand and RMFP
which has been attached to middle finger tip, a plane is
spanned based on which the axis x, y, and z of the hand
coordinate system are calculated as follows:

z =
(xRPM − xRMFP )

‖xRPM − xRMFP ‖
(1)

y = z × (xRHPS − xRHTS)

‖xRHPS − xRHTS‖
x = z × y.

Subsequently, the transformed finger positions are scaled
according to the ratio rH =

lHh

lHmmm
where lHh

and lHmmm

denote the lengths of the observed grasping hand and the
MMM hand. Based on anthropometric data which has been
reported in [16], lHmmm

is defined as a function depending
on the global parameters such as full hand height and width.
The lengths are measured from the hand’s base to the tip of
the middle finger.

To obtain a joint angle solution for the MMM hand based
on the converted fingertip trajectories, an inverse kinematics
(IK) module based on a geometric approach has been imple-
mented. The IK is solved for each finger individually. For
the thumb, a plane is spanned based on the target position,
mean position of the other fingers, and the position of the
CMC joint. Based on the finger segment lengths, a trapezoid
with equal inner angles is created which allows us to derive



Fig. 7: Mapping of a human demonstration of a tripod grasp
captured with the Vicon system. The top line depicts the
Vicon motion data; the bottom the mapped MMM hand
movements.

the joint angle solutions for the metacarpophalangeal (MCP)
and proximal interphalangeal (PIP) joint joint. With regard
to remaining fingers, based on the projection of the current
and the target fingertip positions into the (y, z)-plane the
desired joint angle value for the abduction/addiction MCP
joint can be easily computed. Similar to the thumb, a plane
is created based on the 3D positions of the MCP, the current
fingertip, and target position. The resulting trapezoid leads
to the flexion joints of the finger. Examples of the mapping
procedure of hand movements are depicted in Fig. 7.

C. Converting Object Motions

In order to localize an object from motion capture data, the
MMM framework provides the implementation of a converter
that obtains the position and orientation of the object using
the recorded marker positions and object models that have
been enriched by virtual markers using the RobotEditor (see
Fig. 8). The converter implements the approach of [22]. In
a first step, the centers of the point clouds defined by the
real and virtual marker positions are subtracted leaving only
the rotation to be reconstructed:

cReal =
1

N

n∑
i=1

xReal,i cVirtual =
1

N

n∑
i=1

xVirtual,i,

given N recorded markers and their positions xReal,i at the
actual frame. In the next step, the covariance matrix H of
the positions is determined

H =

N∑
i=1

(xReal,i − cReal) · (xVirtual,i − cVirtual)
T

and the rotation matrix R is obtained by the its singular value
decomposition (SVD)

[U, S, V ] = SV D(H)

R = V · UT .

An exemplary result of this converter can be seen in Fig. 6.

D. Conversion of MMM Movements to Robots

For the mapping of MMM movements to robotic embod-
iments a generic conversion method has been implemented
based on the approach introduced in [23]. The method can
be adapted to different robots by specifying an active joint

Fig. 8: An object with markers (left) and the modeled
instance within the RobotEditor tool (right).

map and the kinematic chains via an XML file. An active
joint map denotes the correspondences between the robotic
joints, which can be actively actuated, and their equivalents
in the MMM model. The conversion of an MMM movement
is performed in a two-step procedure. In the first step, an
initial joint angle solution is found by aligning the active
robotic joints according to the orientations of the corre-
sponding MMM joints. In addition, the target end effector
positions encoded in the MMM movements are transformed
and scaled according to the robot’s global specifications
(global coordinate system, total height and width). To retain
the goal-directedness of the movement to be mapped, in
a second step, an optimization procedure is performed for
each kinematic chain in order to find an optimal joint angle
solution which is close to the initial solution, but ensures that
the robot’s end effectors reach the designated target positions.
For further details on the optimization procedure, we refer
to [23]. Due to the low computational costs and the small
number of parameters, the implemented conversion method
can be adapted to different robotic embodiments with less
effort and allows the mapping of MMM movements onto a
robot in an online manner (see Fig. 9).

VII. ONLINE REPRODUCTION OF HUMAN MOTIONS

The capabilities of the framework can also be used for
instantaneous mapping of human motion capture data onto
humanoid robots. The MMM converters are used online for
both steps: First, the captured human motions are converted
to the MMM reference format for the MMM reference model
and second, the MMM motion is reproduced on a humanoid
robot. The whole process is performed with 30 frames per
second running on a standard Linux PC.

Due to its computational efficiency, the above described
conversion approach (see Section VI-A) is well suited for
real-time angle reconstruction when performing only a single
(or a small number of) optimization steps between subse-
quent frames. In combination with a real-time capable con-
verter for mapping the reconstructed joint angle trajectories
of the reference model to a humanoid robot (see Section VI-
D), the toolchain is capable of mapping captured human
motion data online to a humanoid robot. To demonstrate
this feature we exemplary show an online mapping to the
humanoid robot ARMAR-III. We therefore have to access
the data stream of a motion capture system and enable a com-
munication between the two converters by using the middle-
ware of the ArmarX robot programming environment [24].



Fig. 9: Online motion conversion in the framework: First, the current motion capture frame (top row) is converted to the
MMM reference model (middle row) in order to convert it immediately to the ARMAR-III model (bottom row).

A demonstration of this setup is shown in Fig. 9 and in the
attached video.

VIII. MOTION DATABASE

The KIT Whole-Body Human Motion Database5 has been
developed as part of the MMM framework to create a com-
prehensive database of high quality human whole-body mo-
tion capture (MoCap) recodings and encourage exchange of
MoCap data between different institutions. Existing MoCap
databases include the CMU Graphics Lab Motion Capture
Database [25], HDM05 [26] and MocapClub.com [27]. Our
database differs from existing MoCap databases primarily in
its deep integration into the MMM framework, our approach
to establish a clean and consistent motion description and in
the existence of an application programming interface (API).

Motion recordings in the database are organized into
projects which correspond to the source of the respective
recording. Subjects and objects which are recorded are
entered into the database to collect their anthropometric data
and object attributes respectively. Read access to the Motion
Database is freely available to everyone without registration,
with the exception of some information affected by subjects’
personal rights.

A crucial point in the design of large-scale motion
databases is the availability of a clear and precise description
of the recorded motions. We have devised an extendable
tree of motion descriptions that allows a categorization of
motions. For example, a motion might be categorized as

5https://motion-database.humanoids.kit.edu

“locomotion/bipedal/walk/forward”, “direction/upwards” and
“speed/slow”. Data in the database can be filtered on the
server side to return only records contained in a certain
subtree of the motion description tree. Besides the motion
description tree, the database allows filtering records by
projects, subjects and objects.

The KIT Whole-Body Human Motion Database can be
accessed both via a web interface and an API using the
Internet Communications Engine6 (Ice) as a middleware
platform. The Ice-based API facilitates integration of the
database into existing tools, e.g., for batch processing of
MoCap recordings.

IX. CONCLUSIONS

In this work, we presented an extended version of the
Master Motor Map (MMM), a framework and toolkit for
capturing, representation and reproduction of human motions
in the context of humanoid robotics. We introduced a 104
DoF intermediate model of the human body including hands
and feet. We showed how the generic converter framework
of MMM allows to extract model motions in order to capture
and represent interactions of humans with the environment.
Finally, we presented the online capabilities of the framework
by demonstrating an instantaneous reproduction of human
motion capture data onto humanoid robots. The complete
MMM tool chain has been demonstrated in the video at-
tachment. In future work, the MMM framework will be
the basis for realizing a wide variety of converters covering

6http://zeroc.com/ice.html

https://motion-database.humanoids.kit.edu
http://zeroc.com/ice.html


challenging domains, such as constrained walking or human-
human interaction scenarios.
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